

LA CONTAMINACIÓN POR MICROPLÁSTICOS EN ESPECIES DE TIBURONES

Daniela Salazar Moreno, Rosenda Aguilar Aguilar, Adriana Lechuga Granados

ID	AÑO	AUTORES	UBICACIÓN	ESPECIE	NÚMERO DE ORGANISMOS MUESTREADOS	MP POR INDIVIDUO	TEJIDO	TD	AÑO	ALITODES	LIDICACIÓN	FCDFCIF	NÚMERO DE ORGANISMOS MUESTREADO	MP POR	TE LIDO
				Alopias pelagicus				ID	AÑO	AUTORES	UBICACIÓN	ESPECIE	S	INDIVIDUO	TEJIDO
		Ming-Huang et		(Tiburon zorro				11	2020	Maes et al.	Ocèano Atlantico	(Tiburon cailon)	10	Entre 96-206	Intestino
	2014	al.	Taiwan	pelagico)	1	15	No especifica		2020	rides er di.	Occurro / marringo	Galeocerdo cuvier	10	Lime 70 200	21110311110
				Alopias superciliosus				12	2024	Munno et al.	Golfo de Mexico	(Tiburon tigre)	8	Entre 151-355	Válvula espiral
		Ming-Huang et		(Tiburon zorro de							Océano pacífico	Prionace glauca			
	2014	al.	Taiwan	aletas largas)	6	25	No especifica	13	2022	Huang et al.	Oriental Tropical	(Tiburon azul)	23	Entre 0-53	Parte posterior del pílor
				Carcharhinus								Etmopterus spinax			
		Ming-Huang et		brevipinna (Tiburón				14	2019	Valente et al.	Mar Tirreno	(Tiburón negrito)	34	1-21	Tracto gastrointestinal
	2014	al.	Taiwan	de aleta corta)	1	2	No especifica				Golfo de California				
	-	Min or I I come or a t		Isurus oxyrinchus				4-	2017		(México) Bahia de la		10		
	2014	Ming-Huang et	Taiwan	(Tiburón mako de aleta corta)	Z	32	No especifica	15	2017	Fossi et al	Paz	(Tiburon ballena)	12	171	Biopsia de piel
	2014	ui.	raiwan	diela coria)	3	32	No especifica	16	2020	Maes et al.	Océano Atlántico Noreste	Lamna nasus (Tiburon cailon)	53	Entre 2-8	Válvula espiral
				Sphyrna zygaena			-	10	2020	rides et di.	Notesie	Chiloscyllium	33	Lime 2-0	vaivala espirai
	0014	Ming-Huang et		(Tiburon martillo de	4		T1					punctatum (Tiburon	1 / /		
	2014	aı.	Taiwan	gran cabeza)	1	4	Intestino	17	2023	Matupang et al.	Malasia	bamboa)	9	Entre 27-32	Branquias
		Houge Chong	Queensland	Carcharodon								Chiloscyllium hasselti			
	2024	Hsuan Cheng et al.	Australia	carcharias (Tiburon blanco)	11	5	Intestino	18	2023	Matupang et al.	Malasia	(Pinta roja colilarga)	13	Entre 27-33	Branquias
	2027	Hsuan Cheng			**	<u> </u>	Tillesillo					Scoliodon laticaudus			
	2024	et al.	Australia	(Tiburon tigre)	7	3	Intestino	19	2023	Matunana at al	Malasia	(Tiburon nariz de	27	Entro 27 74	Dranavias
	202 1	Hsuan Cheng		Sphyrna lewini	,		21110311110	19	2025	Matupang et al.	Maiasia	espuela) Carcharhinus sorrah	27	Entre 27-34	Branquias
	2024	et al.	Australia	(Tiburon martiilo)	15	7	Intestino					(Tiburon cola			
		Hsuan Cheng		·				20	2023	Matupang et al.	Malasia	moteada)	13	Entre 27-35	Branquias
	2024	et al.	Australia	(Tiburon sarda)	5	5	Intestino					Carcharhinus			
												dussumieri (Tiburon			
			Mar	Galeus melastomus				21	2023	Matupang et al.	Malasia	mejillas blancas)	12	Entre 27-36	Branquias
	2014	Alomar et al.	Mediterraneo Occidental	(Pinta roja bocanegra)	125	Entre 27-41	Estòmago			_		Scyliorhinus canicula		10	
		Albindi El al.		DOCUITEUIU)	IZJ	LIIII C Z/-41	LSIUIIIUUU	22	2027	Monique et al	Sur do Silia	(Tiburán motoado)	40	Entro 2-5	No osposifica

RESUMEN

En los últimos años se han realizado diversas investigaciones sobre la contaminación con microplásticos (MP) en los océanos. Este trabajo busca presentar evidencias de diversos reportes científicos respecto a la presencia de MP en tejidos de tiburones.

PALABRAS CLAVE

Microplásticos, tiburones, contenido

JUSTIFICACIÓN

La realización de este trabajo representa la base para un estudio exploratorio que se está llevando a cabo en estómagos de tiburones martillo (*Sphyrna lewin*i) y que será concluido en 2025.

OBJETIVO GENERAL:

Obtener un marco de referencia que permita comparar la contaminación por microplásticos en tiburones encontrados en todo el mundo

INTRODUCCIÓN

Los microplásticos (MP), partículas plásticas de menos de 5 mm, provienen de la degradación de plásticos mayores o pellets industriales.

Su presencia en ecosistemas marinos es alarmante, ya que los tiburones pueden ingerirlos, lo que puede afectar su salud y, potencialmente, la salud humana a través de la cadena alimentaria.

METODOLOGÍA

Se llevó a cabo una revisión exhaustiva de artículos científicos sobre la presencia de microplásticos en tiburones a nivel mundial, utilizando las bases de datos ScienceDirect y SpringerLink. Se emplearon las palabras clave: microplastic, shark y content, y solo se consideraron estudios de investigación.

Los datos se organizaron por ID, año, autores, ubicación, especie, número de organismos analizados, cantidad de microplásticos por individuo y el tejido donde fueron detectados.

CONCLUSIÓN

El número de investigaciones sobre microplásticos en tiburones es limitado, lo que refleja la escasez de información disponible sobre el problema. Los estudio demostraron una cantidad máxima de 355 MP/individuo y una cantidad mínima de 1.

Esto justifica la necesidad de que la UMSNH investigue el impacto de los plásticos en los tiburones que están inmersos en océanos cada vez más contaminados.

Referencias

- 1. Cheng, L. H., Smith, J. L., Ziajahromi, S., & Leusch, F. D. L. (2024). Microplastics in large sharks: Abundance and recommendations. Chemosphere, 349, 140957.
- https://doi.org/10.1016/j.chemosphere.2023.140957

 2. Matupang, D. M., et al. (2023). Tropical sharks and microplastics: First evidence from Malaysia. *Marine Pollution Bulletin*, 189, 114762. https://doi.org/10.1016/j.marpolbul.2023.114762

 3. Wang, M.-H., et al. (2024). Microplastics in Pacific sharks. *Marine Pollution Bulletin*, 206, 116769. https://doi.org/10.1016/j.marpolbul.2024.116769